202

A_6

FLUORINATION OF ANHYDROUS $\mathrm{UO}_2\mathrm{F}_2$ by Gaseous mixtures of bromo-fluoro-methanes and F_2

W. Bacher*

Institut für Kernverfahrenstechnik des Kernforschungszentrums Karlsruhe GmbH und der Universität Karlsruhe (T.H.), Postfach 3640, 7500 Karlsruhe (F.R.G.)

and E. Jacob

M.A.N. Technologie, Postfach 500620, 800 Munich 50 (F.R.G.)

Gaseous mixtures of CBrF₃ and F₂ have proven their effectivity in the removal of solid UF₆ decomposition products from uranium enrichment installations lU. In the course of our investigation it was found that anhydrous UO₂F₂, which can be formed under unfavourable conditions, is only slowly attacked by CBrF₃/F₂ mixtures with excess F₂.

Therefore, mixtures of the more reactive compounds CBr_2F_2 , CBr_3F , and CBr_4 with F_2 were investigated as fluorinating agents for anhydrous UO_2F_2 .

In the case of CBr_2F_2 , the controlled reaction with F_2 yields $CBrF_3$ and Br_2 which with excess F_2 reacts to give BrF_3 . This mixture is a very effective fluorinating agent, and quantitative fluorination of anhydrous UO_2F_2 has been achieved.

The reactivity of CBr₃F- and CBr₄-F₂ mixtures has been investigated. The results are presented and the reaction mechanisms are discussed.

1 W. Bacher, E.W. Becker, W. Bier, E. Jacob, A. Maner, paper to the 8th Europ. Symp. on Fluorine Chemistry, Jerusalem (1983) J. Fluorine Chem., 23 (1983) 465.